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abstract: The problem of synchronization of metacommunities is
investigated in this article with reference to a rather general model
composed of a chaotic environmental compartment driving a bio-
logical compartment. Synchronization in the absence of dispersal
(i.e., the so-called Moran effect) is first discussed and shown to occur
only when there is no biochaos. In other words, if the biological
compartment is reinforcing environmental chaos, dispersal must be
strictly above a specified threshold in order to synchronize population
dynamics. Moreover, this threshold can be easily determined from
the model by computing a special Lyapunov exponent. The appli-
cation to prey-predator metacommunities points out the influence
of frequency and coherence of the environmental noise on synchro-
nization and agrees with all experimental studies performed on the
subject.

Keywords: chaos, dispersal, Lyapunov exponent, Moran effect, prey-
predator, synchronization.

Observations and experiments in various fields have shown
that similar dynamical systems that are interconnected and
subject to a common fluctuating driving force can behave
in unison after a transient (Pikovsky et al. 2001). Under
suitable conditions, this phenomenon, known as synchro-
nization, can also occur if the systems are not externally
driven or if they are uncoupled. In ecology, the first case
corresponds to metacommunities with patches interacting
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through dispersal in a constant environment. This case is
well understood (see, e.g., Jansen and Lloyd 2000): syn-
chronization is, in general, obtainable by increasing the
dispersal rate, but it can also be lost if the dispersal rate
becomes too high. The second case refers to metacom-
munities where patches are isolated but subject to the same
environmental fluctuations. Moran (1953) was the first to
investigate this problem with reference to a particularly
simple class of models, and his conclusion was straight-
forward: the metacommunities synchronize no matter how
the environment fluctuates. Royama (1992) highlighted
this notion in his book on population dynamics and called
it the Moran effect, which has since become a synonym
for “synchronization in the absence of dispersal.” However,
as observed by Royama, the conclusion drawn by Moran
can be wrong in the context of general nonlinear dynam-
ical systems. Indeed, we show in this article that density-
dependent populations synchronize in the absence of dis-
persal only if the environmental fluctuations are in a
suitable relationship with the dynamics of the populations.
For example, we show that in prey-predator metacom-
munities, the Moran effect can occur for low environ-
mental variability, but it is lost if the fluctuations of the
environment become too large.

The contribution that first revealed that populations can
synchronize over large distances was the study of fur re-
turns of Canadian lynx to the Hudson Bay Company (El-
ton 1924). Since then, a great effort has been devoted to
this case study (Elton and Nicholson 1942; Moran 1953;
Bulmer 1974; Smith 1983; Sinclair et al. 1993; Ranta et al.
1997, to mention just a few), with some of these contri-
butions supporting the idea that the synchronization of
Canadian lynx is primarily a result of global environmental
fluctuations. However, some recent results (Blasius et al.
1999; Lloyd and May 1999; Maggi and Rinaldi 2006) have
shown that networks of tritrophic food chain models of
the kind suggested for the food web of the Canadian boreal
forest (King and Schaffer 2001) can easily give rise to
synchronization in the absence of a common meteoro-
logical driving force, provided that there is a sufficiently
high dispersal rate. This result and the discovery of a high
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gene flow of the Canadian lynx over distances of 3,000
km (Schwartz et al. 2002) suggest that, most likely, both
meteorology and migration contribute to the spatial syn-
chronization of the lynx population.

In the past decades, many plant and animal populations
have been shown to synchronize over large areas (Koenig
1999; Liebhold et al. 2004; see also app. A in the online
edition of the American Naturalist). In many cases, syn-
chronization has been attributed to the Moran effect, even
if low levels of dispersal were detected (e.g., Higgins et al.
1997). Only in a few cases, for example, the sheep pop-
ulations on the St. Kilda archipelago (Grenfell et al. 1998)
and the caribou and musk oxen populations in Greenland
(Post and Forchhammer 2002), can migration be excluded
and synchronization therefore be attributed exclusively to
the Moran effect.

The aim of this article is twofold. First, we make a few
theoretical remarks on an extremely simple but general
metacommunity model in order to obtain a sharp criterion
allowing us to say (from the analysis of the model) whether
the Moran effect is present or whether a certain amount
of dispersal is needed in order to synchronize the meta-
community. Second, we apply our general method of anal-
ysis, based on the computation of special Lyapunov ex-
ponents (here called conditional), to the study of
prey-predator systems. This extends previous studies on
periodically forced prey-predator models (Kuznetsov et al.
1992; Rinaldi et al. 1993; King and Schaffer 1999) in two
directions: from simple communities to metacommunities
and from periodic to chaotic environments. This class of
metacommunities fits with the main characteristics of
many aquatic ecosystems, such as the plankton food chain
(Scheffer et al. 1997, 2000), and with the characteristics
of many terrestrial ecosystems in boreal and arctic regions,
which, indeed, have often been studied by means of pe-
riodically forced prey-predator systems (Hanski and Woi-
wod 1993; King and Schaffer 1999; Hanski et al. 2001).

Any metacommunity is characterized by four basic el-
ements: a graph in which nodes i and arcs represent(i, j)
patches and dispersal flows between patches, a patch model
describing the dynamics of the population vector in(i)n
patch i under the influence of an external environmental
noise, an environmental noise generator, and the dispersal
rates of each component of the population vector. Various
forms of synchronization are possible, depending on the
metacommunity model. The strongest one is complete
synchronization, which occurs when a synchronous so-
lution for all and for all t exists and(i) (j)n (t) p n (t) i ( j
is stable. A slightly weaker form of synchronization, called
almost-complete synchronization, requires that the max-
imum difference between populations be small. Much
weaker but quite interesting forms of synchronization are
phase synchronization (Blasius et al. 1999; Lloyd and May

1999; Cazelles and Boudjema 2001), out-of-phase syn-
chronization (Doebeli and Ruxton 1997; Ruxton et al.
1997), and intermittent synchronization (Cazelles et al.
2001; Harrison et al. 2001). In general, when the param-
eters of a metacommunity are not too far from the values
giving rise to complete synchronization, that is, when the
parameters are in the so-called presynchronization region,
some weak form of synchronization is present and is re-
vealed by various spatiotemporal patterns.

In order to derive a sharp condition for synchronization
of metacommunities, we first consider only the extreme
case of complete synchronization, thus avoiding the use
of statistical indicators (Liebhold et al. 2004), which are
useful for data processing but not for studying the stability
of a synchronous solution. This implies that we can con-
sider only metacommunities that admit synchronous so-
lutions for any value of their parameters, and we focus
our attention on the stability of such solutions. Moreover,
we restrict the analysis to local stability because this allows
us to extend results (Jansen and Lloyd 2000) known for
the special case of a constant environment.

The metacommunity model studied in this article is
composed of identical patches with interacting populations
in each patch subject to a common environmental noise
and dispersing at a constant rate. If one of these assump-
tions is slightly relaxed, for example, by introducing some
degree of heterogeneity in the demography or in the en-
vironmental noise, the synchronous state ceases to exist,
so that one can no longer speak of complete synchroni-
zation. However, the populations of the various patches
continue to behave similarly, thus realizing a weak form
of synchronization (see, e.g., Ripa 2000). In the application
to prey-predator systems, we will verify the robustness of
this property in order to show that the synchronization
conditions derived for our metacommunity generally im-
ply weak forms of synchronization in more realistic mod-
els. Many, if not all, metacommunity models admitting
synchronous solutions discussed in previous works are
particular cases of our model. For example, the first model
considered by Hillary and Bees (2004) has no dispersal,
while their second model, as well as the model studied by
Earn and Levin (2006), has no environmental noise, a
feature that precludes the possibility of discussing the
Moran effect.

The article is organized as follows. In the next section,
we describe the model and derive conditions for synchro-
nization in the absence of dispersal as well as the minimal
value of dispersal needed to guarantee synchronization
when there is no Moran effect. The analysis is based on
the notion of biological chaos, abbreviated as biochaos,
and the main result is very simple: a metacommunity can-
not synchronize without dispersal if there is biochaos.
Technically, this is ascertained by looking at the sign of
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the largest conditional Lyapunov exponent of a single
patch. Then, in the next section, we apply this criterion
to a prey-predator metacommunity. More precisely, we
first specify the prey-predator model, then we study the
effects of the noise characteristics on synchronization and
discuss the role of prey and predator dispersals, and finally,
we present some cases of weak synchronization. In the last
section, we comment on the value and limitations of our
findings and point out possible extensions to larger classes
of metacommunity models as well as to other classes of
prey-predator models.

Model and Method

The metacommunities considered in this article have N
identical patches connected through corridors along which
migration occurs in both directions. The dispersal pattern
is described by an matrix , called the con-N # N C p [c ]ij

nectivity matrix, where cii is the number of corridors start-
ing from patch i and, for , if patches i andi ( j c p �1ij

j are directly connected through a corridor, and c p 0ij

otherwise. In order to avoid trivial cases, we assume that
all pairs of patches are connected either directly or through
a chain of corridors. Under this assumption, the matrix
C, which is symmetric and zero-row-sum and has non-
positive off-diagonal entries, can be proved to have one 0
eigenvalue (say, ) and all other eigenvalues real andl p 01

positive (say, ).0 ! l ≤ l ≤ … ≤ l2 3 n

Each patch i is occupied by m populations, whose abun-
dances are the components of an m-dimensional popu-
lation vector . The abundances of the populations are(i)n
influenced by an environmental noise common to allv(t)
patches, and local environmental variability is excluded.
The continuous-time model on which we focus our at-
tention is

ẇ(t) p g(w(t), a), (1)

v(t) p w(w(t), �), (2)

N

(i) (i) (j)ṅ (t) p f(n (t), v(t), b) � D c n (t), (3)� ij
jp1

for , where equations (1) and (2) are the noisei p 1, … , N
generator, namely, a set of mw ordinary differential equa-
tions (ODEs; eq. [1]) generating the environmental vector

and an output transformation (eq. [2]) transformingw(t)
the vector into the environmental noise , and equa-w(t) v(t)
tion (3) is the biological component of the model, namely,
a set of mN ODEs describing birth, death, and migration
processes of all populations. In equations (1)–(3), a, �,
and b are constant parameters controlling some features
of the environmental noise (e.g., meteorological coher-

ence) and of the populations (e.g., intraspecific compe-
tition), and is a constant diagonalD p diag[d , … , d ]1 m

matrix specifying the dispersal rates of each component
of the population vector. The main difference between
model (1)–(3) and most metacommunity models used in
the literature (for an exception, see Hillary and Bees 2004)
is that the environmental noise is here described by av(t)
deterministic model (eqq. [1], [2]) and not by a suitably
defined stochastic process. The advantage of model (1)–
(3) is that it allows us to give a precise definition of bio-
chaos, which is an important notion in our analysis. By
contrast, the computations needed to detect whether the
metacommunity synchronizes are based on equation (3)
and can therefore be performed even if the environmental
noise has been generated in a different way.

If all population vectors in equation (3) are identical at
a specified time, they remain identical (synchronous) for-
ever because implies that(1) (2) (N)…n (0) p n (0) p p n (0)
the second term at the right-hand side of equation (3)
vanishes (recall that C is zero-row-sum). In other words,
the manifold , called the syn-(1) (2) (N)…n p n p p n
chrony manifold, is invariant. The synchrony manifold has
dimension equal to m, and the dynamics one can observe
in it are the dynamics one would observe in a single iso-
lated patch described by the equations

ẇ(t) p g(w(t), a), (4)

v(t) p w(w(t), �), (5)

ṅ(t) p f(n(t), v(t), b). (6)

Model (1)–(3) is not the most general model for which
the synchrony manifold is invariant. For example, one
could consider patches of different sizes (Jansen and Lloyd
2000), assume that the dispersal matrix D depends on the
environmental noise or that the migration corridors are
different for different components of the population vector
(e.g., avian and terrestrial predators), and still obtain a
metacommunity model in which the synchrony manifold
is invariant. By contrast, any perturbation of model (1)–
(3) introducing some spatial heterogeneity (i.e., w, a, b,
�, D replaced by wi, ai, bi, �i, or Di) would destroy the
invariance of the synchrony manifold and therefore allow
only weak forms of synchronization (for the case of local
environmental noise, see, e.g., Haydon and Steen 1997).

If the single isolated patch (eqq. [4]–[6]) has an at-
tractor, from now on called a patch attractor, we want to
know whether that attractor is also an attractor for the
metacommunity model (eqq. [1]–[3]). When this is so,
we say that the metacommunity synchronizes or, equiv-
alently, that the patch attractor is synchronous. If a patch
attractor is synchronous, the metacommunity can behave
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synchronously and return to the same synchronous be-
havior after any small perturbation.

Biochaos in an Isolated Patch

Before studying the synchronization of the metacommu-
nity (eqq. [1]–[3]), we point out a few basic properties of
the single isolated patch (eqq. [4]–[6]). First of all, the
environmental submodel (eqq. [4], [5]) is not influenced
by the biological submodel (eq. [6]). This means that the
dynamics of the environmental variables are conciselyw(t)
captured by the so-called Lyapunov exponents (see, e.g.,
Turchin and Taylor 1992; Hastings et al. 1993; Strogatz
1994; Ellner and Turchin 1995; Cushing et al. 2002) of
equation (1). Such exponents are mw real numbers (de-
pending on the parameter a) that characterize the attractor
of equation (1) and describe the sensitivity of its solutions
to initial conditions. They are obtained by suitably aver-
aging the time-varying Jacobian matrix evaluated[�g/�w]
along a solution (Ramasubramanian and Sriram 2000).
Positive Lyapunov exponents reveal the divergence of
nearby solutions, typical of chaotic regimes, while negative
Lyapunov exponents reveal their convergence. The sign of
the largest Lyapunov exponent (LLE) identifies the nature
of the attractor: strange attractors (chaotic regimes) have
positive LLEs, stable cycles and tori (periodic and quasi-
periodic regimes) have LLEs of 0, and stable equilibria
(stationary regimes) have negative LLEs. In the following,
the LLE of the environmental model (eq. [1]) is indicated
by .L [�g/�w]

The Lyapunov exponents of the single isolated patch are
therefore ( ) real numbers that can be extractedm � mw

from the Jacobian matrix

�g/�w 0[ ]�f/�w �f/�n

evaluated along a solution of model (4)–(6).(w(t), n(t))
In view of the triangular structure of this Jacobian matrix,
mw Lyapunov exponents of model (4)–(6) are exactly those
of the environmental submodel (eq. [4]), while the m
remaining exponents are generated by the biological sub-
model, that is, by the Jacobian . However, these m[�f/�n]
biological Lyapunov exponents depend also on the param-
eters a and � because the matrix depends on the[�f/�n]
environmental noise . Thus, the largest biological Lya-v(t)
punov exponent is actually conditioned to the char-L [�f/�n]

acteristics (a and �) of the environmental noise. This is
why it is called conditional.

From now on, we assume that the environment is cha-
otic ( ) because the case of constant environmentL 1 0[�g/�w]

is well known (Earn et al. 2000; Jansen and Lloyd 2000;

Hillary and Bees 2004; Earn and Levin 2006), environ-
mental periodicities can be eliminated through time dis-
cretization, and quasi-periodic environments are of purely
mathematical interest. More precisely, we consider the fol-
lowing two cases: (1) and (2) . ThatL 1 0 L ! 0[�f/�n] [�f/�n]

is, we intentionally rule out from our analysis the partic-
ular case , which does not occur generically ifL p 0[�f/�n]

the environment is chaotic. In all cases, the patch is chaotic
because its LLE is

max {L , L } ≥ L 1 0.[�g/�w] [�f/�n] [�g/�w]

In case 1, biology reinforces environmental chaos, while
in case 2, biology does not contribute to the complex
behavior of the populations, which is exclusively due to
the environment. We can briefly say that in case 1, there
is biochaos, while in case 2, there is no biochaos. The sign
of is therefore the only information needed for de-L [�f/�n]

tecting whether chaos is simply entrained by the environ-
ment or is, at least in part, generated by the biological
processes. It is worth noting that in case 2, all techniques
used for extracting the LLE from a population time series
would actually give an estimate of the environmental LLE.
In other words, the community is simply used as an in-
strument to measure a characteristic parameter of the en-
vironment, as noted by Pascual et al. (1995), who discov-
ered that the LLE extracted from plankton time series was
actually the LLE emerging from the analysis of purely
oceanographic time series.

Synchronization in the Absence of
Dispersal (Moran Effect)

We now focus on the possibility that model (1)–(3) syn-
chronizes (i.e., has a synchronous attractor) in the absence
of dispersal ( in eq. [3]). As noted in the intro-D p 0
duction to this article, this phenomenon is called the
Moran effect. Restricting the analysis to the case of small
perturbations from the synchronous behavior ( (1)n (t) p

), we can obtain the condi-(2) (N)n (t) p … p n (t) p n(t)
tions for synchronization by linearizing equation (3) and
studying the stability of the time-varying Jacobian matrix

evaluated along the solution ( ) of model[�f/�n] w(t), n(t)
(4)–(6). The conclusion of this rather standard analysis
(briefly reported in app. B in the online edition of the
American Naturalist) is that the metacommunity synchro-
nizes in the absence of dispersal if

L ! 0, (7)[�f/�n]

that is, if the largest biological Lyapunov exponent of the
single patch is negative.

We can therefore say that the Moran effect is present
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when there is no biochaos, that is, when the complex
behaviors of the populations are exclusively due to the
environment. This means that two common beliefs,
namely, that density-dependent processes can easily give
rise to chaotic population dynamics and that metacom-
munity synchrony is often due to the Moran effect, are
actually in conflict.

Synchronization in the Presence of Dispersal

We now consider the metacommunity model (eqq. [1]–
[3]) with no restriction on D and assume that the single
isolated patch (eqq. [4]–[6]) has a solution (w(t), n(t))
tending toward a patch attractor. Following exactly the
same approach independently used by Pecora and Carroll
(1998) and Jansen and Lloyd (2000) for the special case
of constant environment, one can prove (for a short
sketch, see app. C in the online edition of the American
Naturalist) that if condition (7) is not satisfied, that is, if
there is no Moran effect, the metacommunity synchronizes
if the following ( ) Lyapunov exponents are negative:N � 1

L ! 0, (8)[�f/�n�l D]i

for . These ( ) conditions are usuallyi p 2, … , N N � 1
satisfied if the dispersal rates appearing on the diagonal
of matrix D are sufficiently high. Note that condition (8)
degenerates into condition (7) when .D p 0

Condition (8) becomes particularly simple when the
dispersal rates d1, d2, …, dm are the same for all popula-
tions, that is, when (where d is positive and I isD p dI
the identity matrix). In fact, it can be shown thatm # m
in such a case,

L p L � l d,[�f/�n�l D] [�f/�n] ii

so that the ( ) condition (8) can be replaced by aN � 1
single condition, namely,

1
d 1 L , (9)[�f/�n]

l 2

where l2 is the smallest positive eigenvalue of the con-
nectivity matrix. In other words, a metacommunity that
does not synchronize without dispersal (because isL [�f/�n]

positive) can always synchronize, provided all populations
disperse at a sufficiently high rate. Condition (9) also says
that the minimum dispersal giving rise to synchronization
is proportional to the largest biological Lyapunov exponent
of the single patch and that the proportionality factor
( ) depends only on the dispersal pattern (the con-1/l 2

nectivity matrix C). This is useful for understanding why

special dispersal patterns are particularly effective in pro-
moting synchronization, as shown in appendix C.

Application to Prey-Predator Systems

The theory presented in the previous section is now ap-
plied to metacommunities of prey-predator systems. The
model we use is the Rosenzweig-MacArthur (1963) model,

n an1 2ṅ p n r 1 � � ,1 1[ ( ) ]K (1 � ahn )1

ean1ṅ p n � m , (10)2 2[ ](1 � ahn )1

where n1 and n2 are the abundances of prey and predators,
respectively, while r, K, a, h, e, and m are positive param-
eters. Parameter r represents the intrinsic growth rate of
the prey, while K is the prey carrying capacity. The function

is Holling’s type II functional responsean /(1 � ahn )1 1

(Holling 1965), where a is the attack rate and h is the
handling time. Finally, e is the efficiency, namely, the num-
ber of newborn predators per unit of captured prey, while
m is the predator per capita mortality rate.

The study of coupled prey-predator communities in the
special case of constant environment (i.e., constant pa-
rameters in eq. [10]) has a long tradition (for the case of
generalist predators also hunting on nonpreferred prey,
see Vandermeer 1993; for the case of migration, see Jansen
2001; Hillary and Bees 2004) and is not surveyed here.
The effect of the environmental noise on any parameter
p is modeled through the function

p p p (1 � v(t)),0

where is a suitably defined zero-mean environmentalv(t)
noise (eq. [2]) that varies between �� and �� (with

). Under these assumptions, p0 corresponds to0 ! � ! 1
the mean value of the parameter, while � is the variability
of the parameter due to environmental randomness. In
the real world, many, if not all, the parameters are affected
by environmental noise, possibly in different ways, but the
study of such a case would be extremely difficult to con-
duct. For this reason, we follow the analysis presented by
Rinaldi et al. (1993), who considered six elementary sea-
sonal mechanisms, each one giving rise to the periodic
variation of only one or two parameters. A detailed de-
scription of the six mechanisms can be found in appendix
D in the online edition of the American Naturalist, together
with the corresponding results. Here we deal with only
one mechanism, namely, that in which the environmental
variations influence the degree of mimicry of the prey
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Figure 1: Two realizations of the environmental noise. A, as inv(t)
equation (12) and . B, . In both realizations, , and� p 1 v(t) p w f p 63

.c p 1/5

(predator), thus facilitating the escape or the capture of
the prey in some specific seasons. Obviously, such a mech-
anism can be modeled by assuming that the attack rate is
influenced by the environmental noise .v(t)

In the article by Rinaldi et al. (1993), the environment
was supposed to be periodic, while here we aim to model
a metacommunity embedded in a chaotic environment.
However, in many cases, the environment fluctuates ran-
domly around a periodic (seasonal) pattern so that our
environmental variable must loosely resemble to an ir-v
regular sinusoid, with an easily distinguishable frequency
and a certain degree of variability in the values of its max-
ima and minima. In order to reproduce such a behavior,
we follow Hillary and Bees (2004) and model the envi-
ronment with one of the most popular chaotic models,
namely, the Rössler oscillator, described by the following
equations (Strogatz 1994):

ẇ p f 7 (�w � w ),1 2 3

ẇ p f 7 (w � 0.2w ), (11)2 1 2

w3ẇ p f 7 0.2 � w w � ,3 1 3( )c

where f and c are two positive parameters. Because we
want to have an environmental noise with a mean ofv(t)
0 and an absolute value smaller than �, we have selected
the function w in equation (2) as follows:

(w � w ) � Aw � w S1 2 1 2v(t) p � , (12)
sup F(w � w ) � Aw � w SF1 2 1 2

where is the mean value of ( ) andAw � w S w � w1 2 1 2

is the maximum distance ofsup F(w � w ) � Aw � w SF1 2 1 2

( ) from its mean value. The environmental sub-w � w1 2

model (eqq. [11], [12]) can easily be used to mimic a wide
variety of qualitatively different noises , as the fre-v(t)
quency of can be adjusted through parameter f, whichv
appears as a multiplicative factor at the right-hand side of
each differential in equation (11), while the coherence
(width of the spectrum) can be controlled through c. A
typical segment of a time series produced by modelv(t)
(11), (12) is shown in figure 1A: if the time unit is in
years, the graph could represent the evolution of a me-
teorological variable with maxima in summer and minima
in winter. While the behavior of w1 and w2 is oscillatory,
w3 has a roughly constant (0) value with occasional high
spikes, as shown in figure 1B. Therefore, by identifying

with w3, it would be possible to use the same envi-v(t)
ronmental model (eq. [11]) to generate rare but large and
random environmental shocks to deal, for example, with

prey-predator communities influenced by the sunspot
cycle.

In the numerical analysis, we have assigned to the pa-
rameters the values used by Rinaldi et al. (1993). With
these values, the attractor of the unperturbed patch is a
limit cycle of period , while the environmentalT p 1.85
noise is chaotic, with central frequency close to 1. In all
our simulations, we have restricted the values of � to the
range [0.1, 0.9], as very high values of � are of little interest
and small values of � can give rise to extremely small
Lyapunov exponents, so that the detection of their sign
can become problematic.

Biochaos in an Isolated Patch

In the article by Rinaldi et al. (1993), an extensive analysis
of the prey-predator model (eq. [10]) with periodically
varying parameters was carried out. In particular, a de-
tailed analysis with respect to � was performed for the six
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Figure 2: Region of biochaos (where ) is in gray in the parameterL 1 0[�f/�n]

space (�, a0). The parameter values are , , ,c p 1/5 f p 6 h p 1/(4p)
, , , and .e p 1 m p 2p r p 2p K p 1

Figure 3: Synchronization regions (on the left of each curve) in the
absence of dispersal for three values of noise frequency: red noise (f p

), noise frequency close to that of the unperturbed population (0.6 f p
), and blue noise ( ).6 f p 30

elementary mechanisms mentioned above. The most re-
markable result was that regardless of the chosen mech-
anism, in any two-dimensional space (�, p0), there was a
region of biochaos for large values of �. In other words,
the largest biological Lyapunov exponent was found to be
positive for large values of � and negative for lower values.
In the case of a chaotic environment, we cannot expect
exactly the same regions of biochaos, in particular when
the environmental model is strongly chaotic. Nonetheless,
our numerical results, reported in figure 2, show that the
regions with (white) and (gray) re-L ! 0 L 1 0[�f/�n] [�f/�n]

semble those reported by Rinaldi et al. (1993). As shown
in appendix D, the same result holds for the other five
mechanisms, so we can conclude that regardless of the
parameter affected by noise, for large values of the envi-
ronmental variability �, the biological processes reinforce
population chaos by adding at least one positive Lyapunov
exponent to those produced by the environment. Our
analysis also shows that given the environmental variability
(�), the chances of having biochaos increase with prey
carrying capacity (K), predator efficiency (e), and attack
rate (a) and decrease with increasing predator mortality
(m).

Synchronization in the Absence of
Dispersal (Moran Effect)

We now study a metacommunity composed of uncoupled
patches. As explained above, in this case, the stability of
the patch attractor depends solely on the sign of .L [�f/�n]

Therefore, all the information needed to determine the
parameter values that guarantee that the metacommu-
nity synchronizes without dispersal are already con-
tained in figure 2. In particular, in the gray region (where

), the patches will not synchronize if there is noL 1 0[�f/�n]

dispersal, while they will synchronize in the white region,
provided that the initial perturbations from the synchro-
nous solution are sufficiently small.

Looking at figure 2, we draw the rather surprising con-
clusion that in the absence of dispersal, synchronization
is actually obtained for low rather than high values of �.
In a sense, this is counterintuitive, as one might expect
that a strong global environmental noise is more effective
than a weak one in synchronizing the patches. The reason
for this is that at high values of �, the patches produce
biochaos, which, in turn, in the absence of dispersal, pre-
vents the metacommunity from synchronizing.

In order to assess the robustness of this result, we have
tested the system with noises of different frequencies and
spectral coherence. In all the following plots, we show the
numerical results obtained for the case of prey and pred-
ator mimicry affected by the environmental noise. None-
theless, the same results have been checked to hold for all
other mechanisms described in appendix D.

In figure 3, we show how the curve delimiting the syn-
chronization region changes when the frequency of the
noise is increased. As mentioned above, with the parameter
values given in the caption of figure 2, the prey-predator
model with constant environment has a period T p

, which is comparable to the mean period of the noise1.85
(close to 1). This case corresponds to the lowest curve of
figure 3. As the frequency of the noise becomes lower (red
noise) or higher (blue noise), the curve moves up. In light
of what we have seen above, this means that when the
environmental clock is not tuned with the biological clock,
there is more room for synchronization.

The coherence of the noise also affects the tendency of
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Figure 4: Synchronization regions (on the left of each curve) for in-
creasing values of balanced dispersal . The points A′, A′′, B,d p d p d1 2

and C correspond to parameter sets used for generating heterogeneous
metacommunities.

the metacommunity to synchronize. In fact, we have
checked through simulation that the region of synchro-
nization shrinks slightly when the noise becomes more
coherent; that is, there is more room for the Moran effect
if the environmental noise has a wide spectrum.

Synchronization in the Presence of Dispersal

We now consider a metacommunity composed of coupled
patches, thus extending to the general case of chaotic en-
vironment several studies (Jansen 2001 and references
therein) performed for the special case of constant envi-
ronment. As we have seen, the effect of dispersal on syn-
chronization depends both on the topology of the meta-
community (matrix C in eq. [3]) and on the dispersal
rates (matrix D in eq. [3]). A detailed analysis of the meta-
community behavior for different C and D goes beyond
the scope of this article, but some insights can be obtained
by studying a few simple cases.

First, let us consider the case where the dispersal rates
d1 and d2 of prey and predator are equal, that is, d p1

, which implies that the conditions for synchro-d p d2

nization take the simple form of equation (9). Synchro-
nization regions obtained with equation (9) for increasing
values of d in a two-patch metacommunity are shown in
figure 4, and, as expected, we see that dispersal promotes
synchronization. In the more general case of unbalanced
dispersal ( ), our numerical experiments are in lined ( d1 2

with the common view that increasing dispersal rates in-
creases the synchronization region.

What are the relative effectivenesses of prey and pred-
ator dispersal in promoting synchrony? This problem has
never been systematically investigated, except for the spe-
cial case of systems with highly diversified dynamics, that
is, fast prey and slow predators (as in plankton food
chains) or slow prey and fast predator (as in plants and
insect pest systems). The main conclusion in this context
(Somers and Kopell 1993; Izhikevich 2000) is that in the
absence of environmental noise, the convergence to syn-
chrony can be faster when the dispersing population is the
fast one. In order to find out whether a similar result holds
in the presence of environmental noise, we have computed
the synchronization regions by setting the prey or the pred-
ator dispersal rates to 0. When the dispersal rates are un-
balanced ( ), the synchronization region cannot bed ( d1 2

obtained from equation (9), namely, from , but itL [�f/�n]

can be obtained from the sign of because theL [�f/�n�l D]i

synchronization conditions are now those in equation (8).
We have thus considered a two-patch metacommunity,
with only prey or predator dispersing, and we have found
cases (fig. 5A) where predator migration is more effective
in promoting synchronization as well as cases (fig. 5B) in
which the opposite is true. Note that in figure 5A, the

system is not slow-fast, and the result is consistent with a
recent simulation study of a network of prey-predator sys-
tems in a constant environment (Maggi and Rinaldi 2006),
while in figure 5B, the prey is fast with respect to the
predator, and the result is in line with the contributions
of Somers and Kopell (1993) and Izhikevich (2000).

For the dependence of synchronization on noise fre-
quency, we have found the same result pointed out in
“Synchronization in the Absence of Dispersal (Moran Ef-
fect),” namely, that red and blue noises facilitate synchro-
nization (see fig. 3). This result is in line with the recent
findings of Fontaine and Gonzalez (2005), who have
shown through a series of laboratory experiments on a
rotifer and its algal prey that red fluctuations promote
synchrony. Moreover, the fact that reddened noise facili-
tates synchronization reinforces the idea that reddened
noise can increase extinction risk (Lawton 1988; Petchey
et al. 1997) because synchronization increases extinction
risk (Earn et al. 1998, 2000). Finally, because dispersal is
often adaptive and lower values of dispersal are favored
by selection when the system is synchronized (Holt and
McPeek 1996; Doebeli and Ruxton 1997; Johst et al. 1999;
Dercole et al. 2007), on the basis of our findings, one can
predict that metacommunities with red or blue environ-
mental noise should be characterized by particularly low
dispersal rates. This property has already been pointed out
in the case of red noise through the extensive simulation
of the evolution of a metapopulation involving a single
species described by an individual-based model (Travis
2001).

Weak Forms of Synchronization

When the conditions for complete synchronization are not
satisfied, weaker forms of synchronization can be present.
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Figure 5: Synchronization with only prey or predator dispersing. In the
white regions, the patches synchronize in both cases, while in the light
gray regions, synchronization is obtained only with predator (A) or prey
(B) dispersing. In A, the values of the parameters are , ,c p 1/5 f p 6

, , , , , and ); in B, theyh p 1/(4p) e p 1 m p 2p r p 2p K p 1 d p 0.21,2

are , , , , , ,c p 1/5 f p 6 h p 1/(40p) e p 0.015 m p 0.3p r p 20p K p
, and .1 d p 0.11,2

Table 1: Predator correlations for the case of prey and
predator mimicry depending on environmental noise

d A′ A′′ B C

0 .69 .35 .16 .18
.1 .82 .93 .77 .14
.2 .87 .92 .91 .78

In particular, this may happen when the metacommunity
is heterogeneous because either the environmental noise
or the demographic parameters are patch dependent or
when the metacommunity is homogeneous but some of
the Lyapunov exponents are slightly positive (seeL [�f/�n�l D]i

eq. [8]).
The impact of patch dependence of the environmental

noise can be easily detected by taking a synchronizing
metacommunity (eqq. [1]–[3]) and substituting a local
noise for the global noise in equationv (t) p v(t) � d (t)ii

(3), where is a small-amplitude, zero-mean indepen-d (t)i

dent noise. The result agrees with results of Ripa (2000)
on a metapopulation, namely, that the correlations be-
tween all populations of the same species tend to 1 when
the standard deviation of the noise di tends to 0. As for
the impact of the heterogeneity in the demographic pa-

rameters, consider the four points A′, A′′, B, and C in figure
4, together with the three values of dispersal associated
with the three curves, thus identifying 12 distinct param-
eter sets of homogeneous metacommunities. If we assume
that there are only two patches and marginally perturb
each parameter set by adding 5% in one patch and sub-
tracting 5% in the other patch from the mean values of
(r, K), K, e, m, a, or (a, h) (one at a time), we obtain 72
distinct heterogeneous metacommunities, which can be
simulated for each of the six mechanisms described in
appendix D, for a total of 432 cases. In table 1, the cor-
relations among predators found through simulation are
shown for the case of prey and predator mimicry, de-
pending on environmental noise (similar results are ob-
tained for the other mechanisms). In each entry of the
table, there should be six correlation values because there
are six heterogeneous metacommunities associated with
each entry. However, for simplicity, we have reported only
the minimum of these six values.

In columns A′ and A′′, the correlation would be 1 if the
patches were homogeneous because points A′ and A′′ are
in the synchronization regions for all three values of dis-
persal. Thus, the introduction of a small amount of het-
erogeneity has little effect at A′, which is far from the
boundaries of the synchronization regions, while it is more
critical at A′′, which is close to the boundary, in particular
for (note, however, that correlation coefficients ofd p 0
the order of 0.4 have often been considered indicative of
some degree of synchronization among populations; see,
e.g., Elton and Nicholson 1942; Higgins et al. 1997; Gren-
fell et al. 1998). Because points B and C in figure 4 are
outside the synchronization region when , the cor-d p 0
responding homogeneous metacommunities would syn-
chronize only when the dispersal rate is sufficiently high
( for B and for C). In the heterogeneousd p 0.1 d p 0.2
case, this is reflected by the fact that the correlation is
extremely low for low values of dispersal in the last two
columns of table 1.

A completely different form of weak synchronization is
intermittent synchronization, which we have observed in
homogeneous metacommunities with parameters just out-
side the synchronization region. In this case, the meta-
community jumps back and forth from phases where the
patches behave in a highly uncorrelated way to phases
where they look completely synchronized, as shown in
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Figure 6: Intermittent synchronization for and� p 0.53 d p d p1 2

in a two-patch metacommunity. The values on the vertical axis0.025
represent the difference between the two predator abundances.

figure 6. As the synchronous and asynchronous phases can
be very long (see the time units on the horizontal axis in
fig. 6), this represents a serious obstacle for discovering
intermittent synchrony from field data.

Concluding Remarks

We focused, in the first part of this article, on a rather
generic metacommunity model with N identical patches
and m populations in each patch, and we derived syn-
chronization conditions by extending results known for
the special case of a constant environment (Pecora and
Carroll 1998; Jansen and Lloyd 2000). Our model is com-
posed of two compartments (environmental and bio-
logical) connected in cascade (eqq. [1]–[3]). The first
compartment describes the time evolution of the envi-
ronmental (e.g., meteorological) variables needed to eval-
uate the birth, death, and dispersal rates involved in the
biological compartment. We have assumed that the en-
vironment is chaotic, and we have called the output of the
environmental submodel environmental noise. Under this
(realistic) assumption, populations of a single isolated
patch can be chaotic only because the biological processes,
being dependent on the environmental noise, cannot filter
out the irregularity impressed by the environment. By con-
trast, the density-dependent biological processes may add
extra chaos, here called biochaos. Technically speaking, this
happens when the so-called largest biological Lyapunov
exponent conditioned to environment is positive. This
Lyapunov exponent does not depend on the dispersal rates
(because it refers to the behavior of single isolated patches)
and can be computed through various algorithms (Ra-
masubramanian and Sriram 2000) for any given parameter
setting of the two submodels. Through the standard sta-
bility analysis of the linearized system, a first interesting
result is obtained: the so-called Moran effect (Royama
1992), that is, the synchronization of all patches in the
absence of dispersal ( in eq. [3]), is nothing butD p 0
the nonexistence of biochaos. In other words, metacom-
munities in which density-dependent biological processes
generate biochaos cannot synchronize without dispersal.
The second, and perhaps more interesting, result is that
the critical (i.e., lowest) dispersal rates necessary to syn-
chronize a metacommunity producing biochaos can be
determined by computing ( ) conditional LyapunovN � 1
exponents, which also depend on the parameters char-
acterizing the environmental noise. If the dispersal rates
are the same for all populations, the result simplifies, and
the critical dispersal rate becomes proportional to a single
Lyapunov exponent, which is again the largest biological
Lyapunov exponent conditioned to environment. More-
over, the proportionality factor depends solely on the to-

pology of the plot describing the dispersal flows; this could
help predict the impact of structural changes associated
with industrial development and land use. In particular,
the analysis confirms the common belief that the estab-
lishment of new migration corridors makes synchroni-
zation easier, while the suppression of existing connections
is a desynchronizing factor.

Our metacommunity model admits a synchronous so-
lution (stable or unstable), that is, a solution with identical
populations in all patches, for all parameter values. This
structural property, which is strictly needed for deriving
the above theoretical results, is satisfied only if the meta-
community has a number of specific properties, for ex-
ample, that all patches be identical. Because our meta-
community model is not the most general model in which
such properties hold, it would be interesting to extend the
analysis to other metacommunities. One could, for ex-
ample, consider the case in which some of the populations
present in each patch (e.g., trees and insect pests and pred-
ators) disperse through different paths. This would require
modifying equation (3) by inserting a matrix C for each
component of the population vector. Another interesting
extension would be to relax the assumption that D is con-
stant because, in many cases of interest, dispersal is con-
trolled by environmental conditions or by population den-
sities (active dispersal).

In the second part of the article, we applied our method
of analysis to the case of prey-predator communities. Part
of the analysis is related to the study of the behavior of a
single isolated patch, and, as such, it can be viewed as the
natural follow-up of earlier studies on periodically forced
prey-predator systems (Kuznetsov et al. 1992; Rinaldi et
al. 1993; King and Schaffer 1999). On the other hand, the
study can also be viewed as the extension of the analysis



440 The American Naturalist

concerning prey-predator metacommunities carried out
by Jansen (2001; see also Hillary and Bees 2004) for the
special case of a constant environment. The model used
for describing the prey-predator interactions is the stan-
dard Rosenzweig-MacArthur model, with demographic
parameters depending on environmental noise. As for the
environmental model, we have used one of the most pop-
ular chaotic models, namely, the Rössler system, which
can easily mimic the apparently random deviations of
many meteorological variables from a standard seasonal
pattern. One can then use these deviations to determine
the current value of the demographic parameters, through
a weighting coefficient called environmental variability.

The analysis has been carried out by computing the
conditional biological Lyapunov exponents for (almost 1
million) different values of the parameters of the two sub-
models. The results emerging from this systematic analysis
are as follows. (1) Biological chaos is present, provided
that the environmental variability is sufficiently high (see
fig. 2). Thus, the Moran effect is more likely to occur in
metacommunities with low environmental variability. (2)
If the frequency of the environmental noise is comparable
with that of the unperturbed prey-predator oscillations,
then biochaos is more likely (see fig. 3). In other words,
when the environmental clock is tuned to the biological
clock, the Moran effect is less likely. Equivalently, red and
blue noise do not prevent synchronization. (3) If the en-
vironment is coherent, that is, if the spectrum of the en-
vironmental noise is narrow, then biochaos is more likely,
and therefore the Moran effect is less likely. (4) Synchro-
nization is favored by high dispersal rates (see fig. 4), in
particular by high dispersal rates of the population with
faster dynamics (see fig. 5).

Because the above conclusions have been proved to hold
only for the metacommunity model (eqq. [10]–[12]), it
would be of interest to extend the analysis under different
assumptions to check whether the conclusions remain
valid. In particular, one could consider other prey-predator
models, including, for example, various chemostat models
that are particularly suited for studying aquatic ecosystems
(Hillary and Bees 2004). On the basis of a similar extension
concerning the case of periodic environment (Gragnani
and Rinaldi 1995), we believe that the results should re-
main valid. More intriguing is the extension to the case
in which the demographic parameters depend on many
environmental variables. For periodically varying environ-
ments, Rinaldi and Muratori (1993) have shown that, in
this case, the regions in parameter space where biochaos
is produced become much more irregular. Finally, still
remaining in the simple case of a single environmental
variable, one could consider environmental noises, such
as that of figure 1B, that can be interpreted as random
shocks, such as fires, earthquakes, hurricanes, and epi-

demics, which might synchronize geographically disjoint
populations even in the absence of relevant dispersal rates.
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PRIN2005-098133) is also acknowledged.

Literature Cited

Blasius, B., A. Huppert, and L. Stone. 1999. Complex dynamics and
phase synchronization in spatially extended ecological systems.
Nature 399:354–359.

Bulmer, M. G. 1974. A statistical analysis of the 10-year cycle in
Canada. Journal of Animal Ecology 43:701–718.

Cazelles, B., and G. Boudjema. 2001. The Moran effect and phase
synchronization in complex spatial community dynamics. Amer-
ican Naturalist 157:670–676.

Cazelles, B., S. Bottani, and L. Stone. 2001. Unexpected coherence
and conservation. Proceedings of the Royal Society B: Biological
Sciences 268:2595–2602.

Cushing, J. M., R. F. Costantino, B. Dennis, R. A. Desharnais, and
S. M. Henson. 2002. Chaos in ecology: experimental nonlinear
dynamics. Academic Press, Amsterdam.

Dercole, F., D. Loiacono, and S. Rinaldi. 2007. Synchronization in
ecological networks: a byproduct of Darwinian evolution? Inter-
national Journal of Bifurcation and Chaos 17:2435–2446.

Doebeli, M., and G. D. Ruxton. 1997. Evolution of dispersal rates
in metapopulation models: branching and cyclic dynamics in phe-
notype space. Evolution 51:1730–1741.

Earn, D. J. D., and S. A. Levin. 2006. Global asymptotic coherence
in discrete dynamical systems. Proceedings of the National Acad-
emy of Sciences of the USA 103:3968–3971.

Earn, D. J. D., P. Rohani, and B. T. Grenfell. 1998. Persistence, chaos
and synchrony in ecology and epidemiology. Proceedings of the
Royal Society B: Biological Sciences 265:7–10.

Earn, D. J. D., S. A. Levin, and P. Rohani. 2000. Coherence and
conservation. Science 290:1360–1364.

Ellner, S., and P. Turchin. 1995. Chaos in a noisy world: new methods
and evidence from time series analysis. American Naturalist 145:
343–375.

Elton, C. S. 1924. Periodic fluctuations in the numbers of animals.
British Journal of Experimental Biology 2:119–163.

Elton, C. S., and M. Nicholson. 1942. The ten-year cycle in numbers
of the lynx in Canada. Journal of Animal Ecology 11:215–244.

Fontaine, C., and A. Gonzalez. 2005. Population synchrony induced
by resource fluctuations and dispersal in an aquatic microcosm.
Ecology 86:1463–1471.

Gragnani, A., and S. Rinaldi. 1995. A universal bifurcation diagram
for seasonally perturbed predator-prey models. Bulletin of Math-
ematical Biology 57:701–712.

Grenfell, B. T., K. Wilson, B. F. Finkenstädt, T. N. Coulson, S. Murray,
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